캐글스터디(2)
-
M5 Forecasting_Kaggle(3/3부)
M5 Forecasting 대회 종료 1) 대회 결과 : 상위 5% 이내 목표를 세웠지만 결과는 참담했다. : 1,946위로 상위 16%에 해당하는 성적으로 마무리, 쉐이크업으로 인해 성적이 1,787등이나 내렸갔다. : 아직 공부할게 많이 남아있다는 것에 위안 삼으며 이번 대회를 마무리 짓고자 한다. 2) LSTM 모델 코드 : 내가 초기 M5에 사용했었던 LSTM 모델 코드(pytorch)는 다음과 같다. : Many to Many, Bidirectional 을 사용 : 초기 모델은 연산량이 많았던 모델이였기 때문에 학습 시간이 많이 소요됨 : 임베딩층을 쓰지 않고 hidden layers 개수를 줄여도 성능의 큰 차이는 없다. class TimeDistributed(nn.Module): def __..
2020.07.05 -
M5 Forecasting_Kaggle (2/3부)
M5 Forecasting 대회 진행 2020년 06월 M5 Forecasting 대회 종료까지 약 일주일이 남은 시점 지금까지 대회를 참가하여 배운 내용을 기록하고자 한다. 매년 진행해온 월마트(Walmart) 판매 상품 예측 분석 경진대회이다. 참가한 대회 정보는 아래와 같다. https://www.kaggle.com/c/m5-forecasting-accuracy M5 Forecasting - Accuracy Estimate the unit sales of Walmart retail goods www.kaggle.com 1) 시계열 데이터에 대한 이해 : 우리가 다루고 있는 현실 세계에서 발생되고 있는 데이터는 대부분 시계열 데이터이며 동적인 개념으로 데이터를 바라봐야 함 : 현실 세계 시계열 데이터..
2020.06.24