시계열 데이터 이상 탐지(Anomaly Detection)
시계열 데이터 이상 탐지는 시간 흐름에 따른 평균과 분산을 고려하는 방법론을 주로 사용합니다. 예를 들어 설명하면, 위 그림과 같이 월별 전력사용량에서 anomaly가 의심되는 두 지점(p1, p2)을 살펴보면 여름에 높은 전력사용량이 의심되는 p1이 감소하는 계절의 p2보다 anomaly일 가능성이 높습니다. 그래서 시계열 데이터의 경우 context를 고려한 이상 탐지 모델을 설계해야 비용 절감과 좋은 성능의 모델을 만들 수 있습니다. Anomaly Anomaly란 일반적인 데이터와는 다른 메커니즘에 의해 발생된 데이터(1980, Hawkins) 혹은 확률 밀도가 낮은 빈도의 데이터(2006, Harmeling) 등 다양하지만 일반적이 않은 데이터라고 정의됩니다. 그리고 Anomaly는 주가 급듭 신..
2022.05.23